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ABSTRACT 

 
This paper introduces a new concept, the software continuum concept based on the observation 
that exists a general parallelism between the software continuum from bits to business/Internet 
ecosystems and the natural continuum from particles to ecosystems. The general parallelism 
suggests that homeomorphisms may be identified and therefore some concepts, processes, 
and/or mechanisms in one continuum can be investigated for application in the other continuum. 
We argue that the homeomorphisms give rise to a biologically-inspired architectural framework 
for addressing robust control, robust intelligence, and robust autonomy issues in e-business 
software and other business-IT integration challenges. As application, we examine the mapping 
of a major enterprise-level architecture framework to the biologically-inspired framework. Design 
considerations for robust intelligence and autonomy in large-scale software automation and some 
major systemic features for flexible business-IT integration are also discussed.  

Keywords: business ecosystem, Internet ecosystem, ecology of software, software automation, 
intelligent systems, business-IT integration 

I. INTRODUCTION 

Nature and all its levels of organization, from particles to ecosystems have been the source of 
inspiration of concept development, mechanisms, and processes in many different non-biology 
disciplines, as detailed in Section II. In nature, one level of organization is the building block of the 
immediately higher one. Particles (electrons, protons) are building blocks of atoms (Figure 1), 
atoms of molecules, molecules of macromolecules, macromolecules of genes, genes of 
DNA/RNA (deoxyribonucleic acid/ribonucleic acid) in chromosomes – from which mRNA 
(messenger RNA), amino acid and proteins are synthesized – chromosomes of genome in cells, 
cells of tissues, tissues of organs, organs of organ systems, organ systems of organisms, 
organisms of population, populations of community and communities of ecosystems.  
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Figure 1. The Natural Continuum and Human Species 

At the center of these levels of organization is the organism level, human species in particular, 
where higher levels of intelligence, autonomy and control exhibit. It is quite common to observe 
that normal, fully-developed, and healthy adult humans – as organisms - carry out their daily 
activities, physical or mental, with amazing ease and robustness. The activities can be as simple 
as raising a hand (hearing or speaking a word) or more involved such as remembering a past 
experience. They can be quite complex such as making a decision requiring deep thinking 
processes. The human capabilities include but are not limited to sensation, perception, cognition, 
memory, emotion, learning and intelligence.  

The ease and robustness of an adult human’s activities and capabilities, physical or mental, at 
any given time involve large numbers of chemical reactions and electrical impulses in the human 
body and are the results of years of a human’s growth and development. In this development, a 
human body begins with the initial formation of a zygote (fertilized egg) developed into an 
embryo, then to a fetus, and at the end of a normal pregnancy term, to a newborn [Visible 
Embryo 2003, Carnegie Collection 2003].  

The newborn’s capabilities are in part gene-based (nature-driven), with the contribution of million 
of proteins synthesized following the transcription-translation process of the central dogma 
[Alberts et al., 1998]. The capabilities are nurture-based during infancy. Human capabilities such 
as robust autonomy and robust intelligence developed from childhood to adulthood are also 
learned from the acquisition, experience, use and practices of different domain knowledge and 
skills.  

To help establish the basis of a biologically-inspired framework, we start by looking at the 
software continuum from bits (0 and 1) upward for similarities between software levels of 
organization and those of the natural continuum from the particle level up (electron and proton). It 
appears that we can loosely define a general parallelism between the software continuum and the 
natural continuum (Figure 2).  

 

 

 

 

 

 

 

Figure 2: The Natural Continuum Versus the Software Continuum 
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The general parallelism gives rise to a biological characterization of the software continuum for 
insights into the conceptualization and realization of robustness in control, intelligence and 
autonomy and flexibility in business-IT integration.  

We organize the remainder of the article as follows.  

In Section II, we present a brief overview of previous work leading to many nature-inspired and 
biologically-inspired accomplishments. We pay particular attention to the work that is considered 
directly relevant to this research.  

In Section III, we detail the claim that a software continuum from bits to Internet ecosystems 
exists, generally similar to the natural continuum from particles to ecosystem as sketched in 
Figure 2. Our software continuum concept is inspired partially from nature and partially from many 
previous genetically, biologically, cognitively and ecologically inspired research publications. 

In Section IV, we present a biological characterization of a biologically-inspired nature-nurture-
learning framework. We look at the software continuum from various perspectives: anatomical, 
metabolic, physiological, cognitive and ecological. In the proposed biologically-inspired 
framework, we present the main considerations for potential applications (Section V). We offer 
our concluding remarks and directions for future research in Section VI. 

II. PREVIOUS WORK 

Every level of organization of nature (particle, macromolecule, genome, gene, DNA, organelle, 
cell, tissue, organ, organ system, organism, population, community and ecosystem) as well as 
their cross-organizations is a complex system in its own rights. Different groups of researchers 
pay attention to different levels of organization for hints, metaphorical analogies and inspirations 
into their own research [Hunter 2004, Johnston 2004, Jog 2002, Lahoz-Beltra et al. 2002, 
Bozinovska et al. 2001, Shotwell 2001, Levy 1992]. These inspirations ranged from some level-
specific features to systemic features, to formulate different theories and models for solutions of 
many different problems in many different disciplines, from adaptive CMOS hardware [Diorio 
2002] and cellular gate technology [Knight 1997] to resource economic models [Geisendorf 
1999].  

At both the cellular level and organism level, von Neumann fathered the concept of cellular 
automata. The concept was based on the three abstractions: (1) cross-over and (2) mutation in 
heredity and genetics (after the Mendelian model) and (3) natural selection (after the Darwinian 
evolution theory) to arrive at a mathematical model for solving problems such as search and 
optimization. Von Neumann’s cellular automaton or CA was extended into a computational 
scheme known as genetic algorithm or GA [Holland, 1992] and into genetic programming or GP 
[Koza et al. 2000]. Together CA, GA and GP define what is called evolutionary computing 
[Mitchell, 1999].  

At the cell and organ level, the artificial neural network (ANN) was modeled mathematically after 
a single neuron model [McCullough et al. 1943]. It was extended with the notion of cell assembly 
[Hebb, 1949]. As a result, multi-layered neural nets were realized with many applications. 
Recently in 2003, Knapp et al. proposed a framework for network security with ideas drawn from 
biological cell and its membrane functionality [Knapp et al. 2003]. 

At the tissue, organ and organ-system levels, in the 1940’s, von Neumann used biological 
metaphors of the brain and memory to create the stored program architecture of early computers 
that is still being used today [von Neumann, 1958]. Anthropomorphic robots were modeled after 
human limbs: multifingered hands [Iberall and Arbib, 1990, Nguyen and Stephanou, 1992], as 
well as legs and arms by others. Computer vision, speech recognition and tactile sensing are 
some examples of the continuing research patterned after the human senses. Autonomic 
computing was patterned after the autonomic nervous system by IBM, Hewlett-Packard, 
Microsoft, and Sun Microsystems. Conversely, Kresh and his colleagues looked at the heart as a 
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complex adaptive system [Kresh et al., 2003]. Paton and his colleagues introduced a 
computational model of the human liver [Paton et al., 2003].   

 At the organism level, unconventional bug-like and humanoid robots were created by Brooks and 
his team [Brooks, 2002]. Abelson introduced the discipline of amorphous computing [Abelson, 
2000]. Ray focused on synthetic biology [Ray, 1993]. Maturana and Varela co-authored the 
autopoiesis theory [Maturana and Varela, 1980].   

At the cognitive level, an experiment by Turing in the 50’s [Turing, 1953], has evolved into an 
active research area called artificial intelligence or AI [McCarthy 2003]. AI focuses on human 
symbolic-logic capability in declarative and procedural knowledge as found in expert systems, 
knowledge-based systems, and some decision support systems. Many others pursued different 
directions  such as machine learning and common sense reasoning [Minsky, 1994]. Included are 
mathematics-based reasoning under uncertainty such as Bayesian theory, fuzzy logic [Zadeh, 
1988] and the theory of evidence [Shafer, 1976].  

At the population and community level of organization, we have Weiser’s ubiquitous computing 
[Weiser, 1993], and von Neumann and Langton’s artificial life [Marchal 1998, Langton 1995]. 
Investigations on artificial life or ALife are being conducted.  

At the ecological level, the ecology of strategy was added by Iansiti and Levien [2004] after 
Moore’s concept of business ecosystem [Moore, 1993] in his ecology of competition [Moore, 
1996]. Moore’s concept was extended to Cisco’s Internet ecosystem [Cisco Internet Ecosystems, 
2000]. The European community quickly adapted the concept to organize the multi-year billion 
dollar Digital Business Ecosystems project [DBE, 2001]. This project was initiated by a 
consortium of 20 European institutions and industries to foster local economy.  

Many major biological breakthroughs and advances resulted, including:  

1. theoretical formulations and models in psychology such as Hebb’s cell-assembly 
[Hebb,1949].  

2. discoveries such as DNA in 1953 [Watson and Crick, 1953] that defined molecular 
biology, and  

3. research projects such as the Human Genome Project coordinated by US 
Department of Energy in 1990 [HGP, 2003].  

 
Specifically, Hebb’s cell assembly formulation not only impacted the field of psychology, but also 
helped create the theory of connectionism in Artificial Intelligence and a research field known as 
Parallel Distributed Processing. Molecular biology is the main source towards bioinformatics. The 
Human Genome Project finished in 2003 with a complete sequencing of all 30,000+ human 
genes has prompted researchers into new trails. 

With the new gene sequencing, Marcus attempted to shorten the space between the genes and 
the mind [Marcus, 2004]. Also influenced by molecular biology are numerous researches in 
developmental biology, neurophysiology, neuroscience, neuropsychology and other disciplines by 
many noted researchers: Lorente De No, Kandel, Lashley [Kandel, 2000]. Other research 
streams include systemic features of complex systems investigated at all level of organization 
such as complexity, self-organization, emergence, and the notion of wisdom of the body in the 
sense of Starling, Cannon and Nuland [Nuland, 1997]. More recent are the new biologically-
inspired research directions discussed in Hickman [Hickman et al. 2000] and in research 
programs such as Biological Information Technology and Systems – BITS of National Science 
Foundation [NSF 01-102, 2001] and Artificial Intelligence and Cognitive Science [NSF 03-600, 
2003].  

Several comments may be made on the previous work cited in this section.  
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• First, some biologically-inspired research efforts were somewhat disconnected and 
isolated, sometimes conflicting. Computer programs in some disciplines were 
considered as cells, but in others they were  viewed as organisms.  

• Second, most AI research largely ignored biology especially in the area of cognition 
research [Cliff, 2003].  

• Third, some models were restricted to a partial functionality of a particular organ 
system. For example previous ANN models [Sajda, 2002] did not account for the 
regulatory role of hormones in the endocrine system which is crucial in the metabolic 
and physiologic regulation at the neural network operation level.  

• Fourth, no obvious links were found between the modeling of mechanisms from one 
level of organization to those of the next level or between different models at the 
same level of organization.  

Whereas DNA in the genome is the common ground for both the creation of life and the 
maintenance of life, no common ground is yet established for all the biologically-inspired research 
disciplines listed above. We claim that the new concept of software continuum will serve as the 
common ground. It will bridge the existing gap and take advantages of previous findings in 
biologically-inspired research, as argued in Section III.  

III. THE SOFTWARE CONTINUUM 

Conventional programming languages are a set of powerful tools in many previous and current 
biologically-inspired computing research and related disciplines.  These include LISP, C/C++, 
Java and specially designed languages such as ACL - Agent Communication Language or Tierra 
[Ray, 1993]. However, the question of a “genomic” programming language has neither been 
explicitly asked nor implied. Basically we ask whether an object-oriented programming (OOP) 
platform such as Sun J2SE/J2EE or Microsoft .NET, can be extended and considered as similar 
to the role of genome rather than being just a toolset.  

The first reason leading to the previous question is that the biological genome and an OOP 
language evolved somewhat similarly. The genome is “thought of as a summary of many 
generations of previous experience in dealing with environment” [Grobstein, 2004]. An OOP 
platform can be thought of as a summary of many generations of evolutionary programming 
experience.  

The main reason, however, results from the observable similarities between corresponding levels 
of organization in nature and in software as illustrated in Figure 2. We want to find out whether 
OO libraries can be considered as chromosomes, OO classes as genes, the sequence of OO 
packages in the library as DNA sequence.  Will it make sense to consider basic machine 
instruction set as set of codons, basic programming constructs as nucleotides, single algorithms 
as exons, OO methods (functions) at class level or instance level as proteins, OO utility methods 
as enzymes, and OO executable programs as biological cells? At levels higher than the cell, we 
ask whether OO API (application programming interface) are similar to tissues, OO components 
(e.g. COM/DCOM) to organs, OO frameworks (e.g. Oracle’s PeopleSoft, SAP R/3) to organ 
systems and OO application systems to organisms.  

Intuitively, we know that the similarities between corresponding levels of organization, if they 
exist, will not be complete or perfect. Some similarities may express strong resemblance, others 
weaker. Differences are expected to exist.  
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BITS AS PARTICLES, SIMPLE DATA STRUCTURES AS ATOMS, COMPLEX DATA 
STRUCTURES AS MOLECULES  

At the lowest level of the software organization (Table 1, right side), data and machine 
instructions are expressed as a series of 0’s and 1’s,. The bits are grouped according to some 
encoding scheme representing them. The bits that define the set of characters and other symbols 
are similar to the particles i.e. the electrons and protons (Table 1, left side). The Lewis 
configurations [Petrucci et al. 1993] of particles uniquely describe the corresponding atoms from 
hydrogen to ununoctium, the elements of the periodic table. 

Table 1: The Natural Continuum Versus the Software Continuum 

The natural continuum and biological 
building blocks 

The software continuum and 
object-oriented building blocks 

Particles (electrons, protons)
Atoms

Molecules

Monomers
Polymers

Macromolecules

Genome
Chromosomes

Genes
Introns and exons

DNA/RNA
DNA/RNA polymerase

Nucleotides
Amino acids

Proteins
(hemoglobin,..)

Enzymes
Cells

Bacteria, Viruses, Prokaryotes
Tissues

(epithelial, connective, ..)

Bits (0’s, 1’s) 
Primitive data types 
(e.g. char, int, float) 
Non-primitive data types 
(e.g. String, struct) 
Fields 
Lists, Arrays 
Complex data structures, records, XML 
structures 
OO foundation classes 
OO libraries 
Object classes 
Data members and Methods 
Chain of OO classes across libraries 
Control program and instruction counter 
Firmware instructions 
High-level programming constructs 
(assignment, if-then-else, while or do-while) 
Active algorithms, instant methods 
(transport, remote procedure calls) 
Utility algorithms, utility methods 
Executable programs/Dynamic Link Library 
(DLL) 
Computer viruses, Worms 
Components 
(Interface, API, Beans, EJB, ..) 

 

 A sequence of bits may also represent machine code. For example, ‘10000111’ in the Intel 8085 
instruction set is the encoded instruction “Add the contents of register A to the accumulator”. 
Similarly, a chain of nucleotides represents an amino acid as a nutrient broken down from food 
proteins. A sequence of nucleotides also represents a genetic code, e.g. “GGC” is DNA codon for 
glycine. 

The characters, special symbols and number digits define primitive data types such as character, 
integer, float, double, long or short, much as the electrons and protons define the atoms. The 
atoms in turn form molecules much as primitive data types form complex data types. More 
complex molecules such as nucleotides in DNA are formed from the combination of atoms and 
other molecules. Similarly, more complex data types are formed from simple ones such as those 
found in COBOL copybook, C struct, or C++ or Java classes. Thus, bits are similar to particles, 
primitive encoded data (e.g. ASCII coded data) to atoms (e.g. H, O, N or C) and non-primitive 
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data types (e.g. String) to molecules, (e.g. CO2, H2O). Then, fields can be considered as 
analogous to monomers, and lists, arrays or XML structures to polymers and macromolecules. 

OOP PLATFORM AS GENOME, LIBRARY AS CHROMOSOME, CLASS AS GENE AND 
SEQUENCE OF OO PACKAGES IN THE LIBRARY AS DNA  

Organisms are specified by genomes. The genome in the zygote contains all biological 
information and is a blueprint for the development of an organism following fertilization.  

OO programs are specified by OOP platforms. Unlike genome to organism development, a 
vendor-provided OOP platform to program development is incomplete, in the sense that OOP 
needs additional codes by software developers to specify a program. An OOP platform contains a 
basic set of available source codes to create an OO program but OOP alone does not generate 
new programs by itself. The development of the application program needs the intense 
collaboration of a software developers’ knowledge and skills. Software developers must add the 
definitions of new data fields and new methods for newly defined or derived classes. The 
additions by software developers together with OOP-provided libraries then constitute a 
“blueprint” for a software program.  

A genome contains genes in DNA packaged in chromosomes. Similarly, an OOP has classes in 
OO packages stored in the source libraries. In a living cell, there are existing proteins and 
enzymes that work together with genes to transcribe DNA into mRNA. The mRNA is then 
translated into new proteins. Similarly in OOP there are binary libraries that contain object code 
(pre-compiled) members distributed along with the source libraries.   

A gene is a specific sequence of DNA in the chromosome. It is a functional unit of inheritance. An 
OO class is a member of its library which is similar to a chromosome. A class is a functional unit 
of OO inheritance, from which another OO class can be derived.  

Mutations occur in genes. Likewise, changes to codes occur in existing OO classes. Of course 
mutations in genes are not the same as modifications to current instructions in OO classes, but 
they are both alterations to the originals. In this sense, we might say modification such as method 
overriding and method overloading is weakly analogous to mutations.  

BASIC INSTRUCTIONS AS NUCLEOTIDES, PROGRAMMING CONSTRUCTS AS AMINO 
ACIDS, COMPILED CODES AS mRNA, METHODS (FUNCTIONS) AS PROTEINS, UTILITIES 
AS ENZYMES, AND COMPILATION & LINKAGE-EDITING AS TRANSCRIPTION & 
TRANSLATION PROCESS 

DNA is a long chain of nucleotides with bases (A, T, C and G). The sequence of OO codes is a 
long chain of basic statements. These statements are translated into basic machine instructions. 
Thus, basic instructions are like nucleotides. According to the central dogma, proteins are “coded” 
via a transcription process from DNA to mRNA inside the nucleus and via a translation process 
from mRNA involving ribosomes to become proteins outside the nucleus. Analogously, the 
executable codes are the results of a compilation (translation) process to obtain object code or 
byte code and a linkage-editing process from source instructions.  

Although DNA determines the sequence of 20 amino acids in proteins, the information in DNA is 
not used directly. RNA as a copy of DNA must be transformed to mRNA following a process 
called transcription that occurs in the cell nucleus. During transcription, the DNA is unwound, and 
the mRNA is synthesized in the direction of 5’-3’ template strand of DNA. The transcription is 
carried out one nucleotide at a time with the help of an enzyme called RNA polymerase. The 
primary mRNA obtained is then edited in a process that removes the introns and joins the exons 
together to define a unique feature or function to mature the mRNA. The matured mRNA is 
further involved in the translation process outside of the nucleus to prepare the mRNA from a 
nucleotide sequence to an amino acid sequence. This sequence is linked in the correct order by 
ribosomes.  
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Analogously, method (functions) of an OO class are made of four basic programming constructs 
namely assignment (=), if-statement, while-statement and do-while statement, much like amino 
acids. These statements are high-level, “structured” English. They can’t be used directly by the 
computer. They must be translated into machine language instructions. During compilation, the 
compiler instruction counter acts much like a RNA polymerase which facilitates the transcription 
process.  

The instruction counter examines one instruction at a time just as the DNA polymerase opens up 
the DNA chain one nucleotide at a time to allow the DNA template to perform complementary-
based pairing with incoming ribonucleotides. The introns (non-coding sequence) of the gene are 
like the space reserved for data members in a particular OO class. The instruction counter enters 
and exits a block of codes delimited by the set of “{“ and “}”just as the polymerase recognizes the 
promoter region and the terminator region in DNA genes.  The compiled code is followed by a 
linkage-editing process to prepare it as an executable program. Some similarities discussed in 
this paragraph were identified by Melanie Mitchell [Mitchell, 2000].  

The biological process and the programming process appear to be running in opposite directions. 
While the nucleotides (lower level) in DNA are translated into amino acid (higher level) sequence 
in proteins, the programming constructs (high level) in OO method or program, are actually 
translated into machine instructions (lower level). While introns are stripped from mRNA during 
translation, OO data members (variables) are reserved spaces in the OO compilation process.  

Genes are pulled from DNA and used in a transcription process to synthesize mRNA, and in turn 
mRNA synthesizes different proteins in a translation process. Similarly, the import statements in 
Java or #include statements in C++ pull OO source codes from the library during compilation. The 
compiled codes are link-edited to obtain an executable program much like mRNA synthesizing 
the intended protein. During the gene expression, enzymes such as DNA polymerase and RNA 
polymerase initiate, elongate, enhance, terminate or inhibit the transcription and/or translation 
process from genes to proteins. This is analogous to the program instruction counter and other 
utility algorithms of the compiler that initiate, facilitate, terminate, or inhibit the creation of new 
methods for new classes. 

OO EXECUTABLE PROGRAMS AS BIOLOGICAL CELLS 

A cell is a biological unit bounded by a cell membrane. It has a nucleus. All its organelles 
contained in the cytoplasm of a eukaryotic cell. Ionic particles (K++, Na++ etc.) move in and out 
of cell membranes by diffusion to generate action potentials for work. In a similar fashion, an 
OOP program (console or window application) has the main ( ) method considered as nucleus, 
where the main program control occurs. The curly brackets that delimit the start and end of a 
source program are functionally similar to the cell membrane. The coded methods in the program 
are similar to the cell organelles. Data move into a program via argument variables which are the 
inputs to be processed by the program. The program outputs the results by the return variables.  

A  cell can be prokaryotic i.e. it has no nucleus. Similarly, an OO program can be a compiled DLL 
(dynamic link library), Java applet or servlet. These elements do not have main (), much as the 
prokaryote does not have a nucleus. Cells such as eukaryotes can be either germ (reproductive) 
cells or somatic cells. Sperms and eggs are germ cells. A fertilized egg or zygote is a fusion of 
sperm and egg.  In a similar fashion, an initial OO program can be considered as the fusion of a 
software developer’s software concept and OOP libraries at inception. A program can replicate    
( e.g., [Mitchell, 1999])although it is not the same as a zygote that divides. Other examples of 
programs which can copy themselves are computer viruses and computer worms. 

All cells except germ cells in a human body are somatic. Somatic cells are specialized cells 
created for a particular task. Examples are skin cells, blood cells and nerve cells. Analogously, 
OO executable programs are created to address a particular processing task. Examples are GUI 
programs capable of receiving inputs and display outputs much like sensory (skin) cells, or 
artificial neural nets much like nerve cells. Somatic cells divide to create two identical daughter 
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cells. Groups of somatic cells differentiate to become constituents of different organs. OOP 
programs do not divide as cells do, however, they somewhat “differentiate”: by overriding or 
overloading existing methods from their parent or super class. This process is somewhat like a 
zygote that differentiates into ectoderm, mesoderm and endoderm.  

An OO program contains certain major functionalities similar to cell organelles. Read and write 
data using get and set methods are much like the transport mechanism (out and in) across cell 
membranes. Decomposing data into different small pieces (fields) for computation and 
composing the fields into newly combined format (records) are like the operations conducted at 
ribosomes and at the Golgi apparatus in cells. Moving data from one method to another among 
different methods is like the function of the endoplasmic reticulum. Temporarily storing data 
internally is similar to the function of a vacuole. Transforming or converting data from one format 
to the next to give different meaning to the information it carries is like mitochondria that produce 
ATP (adenosine tri-phosphate - to be explained further in the next subsection) for use in various 
chemical reactions. 

Other comparable constituents are shown in Table 1. Not all methods of an OO program are 
comparable to organelles in a cell, of course.  

DATA AS MATTER, INFORMATION AS ENERGY, MESSAGES AS SECRETED CHEMICALS 
OR ACTION POTENTIALS, MESSAGE FORMATS AS NEUROTRANSMITTERS  

A living cell requires energy to maintain its structure and processes by chemical reactions [Fox, 
1996]. The reactions are coupled in the sense that one reaction releases energy for use by 
another reaction. The methods of an executing program are coupled, i.e. the data outputted by 
one method are fed into another method like coupled chemical reactions in cells. The data that 
are read by a method (get method) is like oxidation reaction. The one that is written (set method) 
is like reduction reaction. We claim that data seem similar to matter (nutrients) and information to 
energy (ATP). The methods in the program are like chemical reactions in a cell.  

A chemical reaction is endergonic if it needs energy and exergonic if it releases energy. A method 
that requires input data is like an endergonic reaction. If the method outputs the data, it’s like 
being “exergonic”. Exergonic chemical reactions gear toward one endergonic reaction: the 
creation of ATP.  

Table 2: Biological Processes versus Software Processes (cont.) 

The natural continuum and biological 
building blocks 

The software continuum and 
object-oriented building blocks 

Cellular energy
Glycolysis, Krebs cycle

ATP
Energy

Photosynthesis
Respiration

Oxidation
Reduction

Blood
Heat

Potential energy

Raw data 
Encoding scheme 
Encoded data 
Information 
Information retrieval 
Information release 
Information read 
Information write 
Data stream 
Transient information 
Persistent information 

 

The breakdown of ATP is used to provide energy for other chemical reactions in the cell. The 
breakdown of input data and build-up of output data by a program are thus similar to the 
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breakdown of nutrients and build-up of ATP. Therefore we might say that data to a program is 
similar to matter to a cell, and information to a program is like energy to a cell.  

Cells sense and respond to their environment which consists of nutrients, other cells and/or 
foreign cells (bacteria and viruses). OO programs constantly sense and respond to their 
environment. Like cells, they perform one-on-one communication and/or broadcast information 
via messages.  

A signaling cell produces a particular molecule (protein, peptide, amino acid, nucleotide, etc.) that 
is received by the target cell by means of a particular receptor protein following a precise binding. 
A calling program issues a particular message addressing a particular called program that 
expects an incoming message of a precise format. The molecule arriving at the receiving cell is 
then transformed in a series of signal transduction steps into in a usable format. The called 
program has a method to receive message and many other methods to transform the data from 
the calling program into meaningful information.  

Cells can signal over short range (neighboring cells) or long range. Likewise, program calls can 
be local or remote. Cells use hormones to broadcast signals by secreting them into the 
bloodstream. There are three types of hormones: autocrine (secreting internally to the cell), 
paracrine (secreting to neighboring cell) and endocrine (secreting to remote cell). Similarly, 
programs can pass messages internally, locally, or remotely to other programs.  

Beside endocrine, another type of communication is exhibited in neural cell signaling that can go 
a long distance. An electrical impulse created at the neuron cell body or dendrite travels along the 
axon to another neuron. At the junction (i.e., a synapse) the impulse is converted to a chemical 
signal called a neurotransmitter that generates a new impulse to travel along the axon terminal. 
From neuron to neuron, action potentials and neurotransmitters interchange to reach the target. 
From program to program, messages and their formats interchange to reach the target program. 
Classical RPC (remote procedure call), Java RMI (remote method invocation), LPC (local 
procedure call), and API (application programming interface) calls are similar to a neuronal action 
potential, a secreted chemical or a contact-dependent binding via cell-surface receptors (i.e. ion-
channel-linked, G-protein-linked or enzyme-linked receptors). Their mechanisms may be different 
but the nature of the calls is similar.        

Intercellular and extracellular signaling cascades can distribute a signal to initiate many chemical 
reactions or neural processing in parallel. They can also converge to a particular location to give 
a complex response. The distribution (e.g. multiple thread processing) and convergence of 
messages inside a program or between programs are common in OO programs. 

OO COMPONENTS/PATTERNS AS BIOLOGICAL TISSUES, FRAMEWORKS AS ORGANS, 
SOFTWARE PRODUCTS AS ORGAN SYSTEMS AND SOFTWARE APPLICATIONS AS 
LIVING ORGANISMS  

Multiple cells of similar functions make up tissues. Tissues of more than one type make up 
organs. The activities of and interactions between tissues determine the physiology of the organs 
(Table 3).  

The OO components such as COM/DCOM (component object model/distributed COM), CORBA-
compliant ORB (Common Object Request Broker Architecture-object request broker) or Java RMI 
as well as beans or EJB (enterprise java beans) are component software architectures that allows 
applications to be built and put together for interoperability [Iyer et al. 2003, Linthicum 2001]. OO 
components are like the tissues which make up of different organs.  

The OO components and patterns for building a GUI in an OO application are 
much like epithelial tissue (e.g. skin). Via the GUI, data are captured for 
processing. Via skin, sensation and pain are captured. Blood tissue carries nutrients, wastes, 
oxygen and carbon dioxide across the circulation system.  Neural tissue carries electrical  



www.manaraa.com

Communications of the Association for Information Systems (Volume 15, 2005) 263-288                          273            

 

   

Table 3. The Natural Continuum Versus The Software Continuum (cont.) 

 

The natural continuum and biological 
building blocks 

The software continuum and 
object-oriented building blocks 

Tissues
(epithelial, connective,..)

Nervous tissue
Muscle tissue

Epithelial tissue
Connective tissue

Glands
Organs
Brains
Heart

Kidney
Lungs

Muscles
Limbs

Organ systems
Skin

Circulatory system
Sensory system

Nervous system
CNS/ANS

Immune system
Respiratory system

Digestive system
Reproduction system

Organism

Components 
(interface, API, Beans, EJB,..) 
Control program, executive programs 
Action agents, probes 
Interface 
RPC, DCE, ORB programming 
Applets, Servlets, ASP, JSP, databases 
Software packages, shrink-wrapped 
Operating systems, executives 
Software engines, databases 
Editing, Filtering systems 
GUI interfaces, user interfaces 
Command and Control systems 
Adapters, Connectors 
Software components systems 
System and/or Network management 
Network, communication 
Agent system, robotic sensing  
(tactile, vision, etc.) 
Neural nets 
AI 
Error handling system, security 
Regulation system 
Data manipulation, garbage collection 
Genetic programming 
Software species 

 
impulses across the neural nets. TCP/IP protocol suite (an implementation of the ISO/OSI – 
International Standardization Organization/Open System Interconnect - reference model) and 
message- oriented middleware [Altman et al. 1999] such as BM MQSeries [Blakeley 1995] or 
Microsoft MSMQ for transport of asynchronous messages across applications are similar to blood 
tissue and neural tissue. 

OO frameworks are found in many vendors’ products (e.g. ERP – enterprise resource planning, 
SCM – supply chain management, Oracle’s Peoplesoft, SAP R/3) are much like organs that 
provide complex functionalities. Relational databases and other types of DBMS (Oracle, DB2, 
IMS, Informix, Sybase) are analogous to the heart. Databases stored data and pump data 
records in and out of the database or modify them by SQL statements such as select, insert, 
delete, and update. The heart stores blood and pumps it to and from atria and ventricles. ERP, 
SCM frameworks and databases can then be considered as biologically similar to organs. Table 3 
lists other OO constructs which are similar to various biological organs.  

Like human organs, OO frameworks or databases do not function as-is. They need be 
augmented with user application codes to become operational OO application systems just as 
organs that must be part of an organ system (e.g. circulation, respiration, etc.) to be operational. 
OO application systems (e.g. university’s administrative systems) therefore are analogous to the 
biological organ systems.  
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The above similarities between lower-level building blocks (between cells and programs, tissues 
and components, organs and frameworks/databases, and organs systems and applications) 
suggest that software application systems can be considered somewhat similar to organisms.  

 

OO E-BUSINESS APPLICATIONS AS POPULATION/COMMUNITY AND BUSINESS/ 
INTERNET ECOSYSTEMS AS NATURAL ECOSYSTEMS  

Similar species constitute a population. The collection of different species makes up a 
community. Likewise, OO homogenous software collection forms a population. OO 
heterogeneous software collection (e.g. the collection of different software installed in a computer 
as well as across many machines and operating systems) are similar to natural communities 
(Table 4).  

Table 4. The natural continuum versus The software continuum (cont.) 

The natural continuum and biological 
building blocks 

The software continuum and 
object-oriented building blocks 

Organism
Microbe

Population

Community

Ecosystem

Software species 
Computer virus 
Platform 
(mainframe, Unix, Windows,.., STP, EDI, 
stocks, manufacturing, Scientific, industrial,..) 
Heterogeneous platform 
(SCM, ERP, enterprise application 
integration,..) 
Business ecosystem (Internet ecosystem) 

 
There are different kinds of software “species” in an operating environment. These include: (1) 
mainframe operating systems, UNIX of different flavors, Sun Solaris, HP OS, Linux, Microsoft 
Windows, etc., (2) applications generated by different languages (traditional application systems 
on the mainframe such as IBM CICS - Customer Information Control System), (3) DBMS - 
Oracle, DB2, IMS, Informix or Sybase), (4) network operating systems (Novell, CISCO) and (5) 
OO application systems. They interact, “live” together and make up of the ecology of software.  

In fact, this notion of a software community and the relationship among its members can be 
extended to the notion of Internet ecosystems and business ecosystems. Thus, the software 
continuum concept from bits to business/Internet ecosystem introduced in the previous sections 
appears mappable to its biological counterpart, the natural continuum from particles to natural 
ecosystems.  

IV. TOWARDS A BIOLOGICALLY-INSPIRED SOFTWARE AUTOMATION FRAMEWORK FOR 
E-BUSINESS: A BIOLOGICAL CHARACTERIZATION OF THE SOFTWARE CONTINUUM 

The general parallelism elaborated in section III gives rise to a characterization of the software 
continuum from perspectives similar to those of the natural continuum, namely, the anatomical, 
metabolic, physiological, cognitive and ecological perspectives. Our intention is to examine 
whether the biological characterization can offer new insights into homotopic properties towards a 
biologically-inspired framework for the making of robust e-business software automation as well 
as business-IT challenges.  
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ANATOMICAL ASPECT: FULLY-CONNECTEDNESS 

In a human body, a certain level of organization, e.g. organ, is the container of the immediately 
lower level components e.g. tissue (Figure 3). Some elements or components of a container in an 
organism are however not entirely isolated from those in another container.  Examples are nerve 
cells in the central nervous system and peripheral nervous system (containers: brain and spinal 
cord) of a human body. The nervous system reaches (connect) every part (every other container: 
organs and tissues) of the body. The connectivity of the nerve cells demonstrates the fully- 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Biologically-Inspired OO Framework for Software Automation 

 
connectedness (or near-fully) property in the body. The interface between the cells is what 
Bernard called the “milieu interieur” and Nuland dubbed the “constant sea within”. 

The fully-connectedness provides only connectivity. It does not necessarily permit the receiver to 
accept the information from the sender. The transfer of information requires a proper interface at 
the receiving end. For example the hormones secreted by various endocrine cells and glands 
reach the cells of the target organs or tissues via the blood circulation as transport mechanism 
from the heart to aorta, arteries, arterioles and finally to capillaries. Proper receptors situated on 
the surface of the target cells must be available for the hormonal binding to take place.  

There are different interface structures among levels of organization. We differentiate two major 
types of interface in biological systems: intra-organism, and inter-organism. In the first type which 
occurs within an organism, the interface is identified as the interstitial fluid between cells or the 
plasma fluid in the blood. The second type of interface, inter-organism, occurs among organisms 
via other media such as air and water ranging from viral and bacterial airborne from an organism 
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to another or macroscopically social contacts to the exchange of body fluid or blood transfusion 
between two human bodies. The fully-connectedness serves as a means for end-to-end transport 
and signaling, locally or remotely.   

The connectedness property is found in the layered software as shown in Figure 3. Similar 
interface types (intra- and inter-) are observable in software calls. The fully-connectedness 
property however is not found in most software. Layered software systems and software 
architectures were designed to hide complexity (e.g. Parnas’ information hiding) as indicated by 
the oblique arrows between two adjacent levels of organization.  

In fact, unlike the biological building blocks, in telecommunications and in most software systems 
and applications’ building blocks, a particular software layer does not connect to those which are 
not immediately above or below it. For example, the ISO/OSI reference model defines 7 layers 
[Comer et al, 1994]: (1) physical at the bottom, (2) datalink, (3) network, (4) transport, (5) session, 
(6) presentation, and (7) application at the top. A particular layer does not have the ability to 
directly influence the operations, functions and behavior of other distant layers as seen in a 
human body. 

Thus, we claim that fully-connectedness or near-fully-connectedness within a software organism 
is a property which should be observed if robustness feature is desired in biologically-inspired 
software.  

METABOLIC ASPECT: HORMONES AND HORMONAL CONTROL  

Metabolism is the collection of chemical reactions that (1) breakdown compounds to capture the 
required energy (2) synthesize small molecules and (3) convert the excess of compounds for 
storage or for waste excretion. The chemical reactions occur at the intracellular and intercellular 
level. An example at the intracellular level includes the breakdown of simple carbohydrates (e.g. 
glucose) to release ATP in a process called catabolism and in the acquisition of energy to 
produce other molecules in the process of anabolism. Both catabolism and anabolism make up 
the metabolism in the body [Solomon et al. 1996]. An example at the intercellular level is the gas 
exchange between air and blood in the lungs and between the blood cells and tissues of the body 
via the capillaries [Fox 1996].  

While it is not obvious to think of software functions which are homotopic to the glycolysis, Krebs 
cycle and oxidative phosphorylation/energy transport chain occurred in the cytoplasm and/or 
mitochondria of a cell, the metabolism concept is applicable to software programs. In fact, 
catabolism and anabolism respectively can be considered similar to the decomposition and 
composition of information (which is viewed as energy, as argued in section III).  

From the metabolic aspect, the occurrence of pathways requires two biological elements: binding 
and enzymes. Specific bindings exist just as signatures in the software function calls do (a 
signature consists of the name of the function call, and its arguments and associated data types). 
Enzymes (and co-enzymes) are present for the chemical reactions to take place just as software 
utilities (e.g. decimal-to-integer or vice versa) – considered as similar to enzymes – must be 
available for the preparation of proper data format for processing. The binding and the enzymes 
allow proper metabolic pathways (e.g. the product of one reaction is the substrate of the next 
reaction in a series of reactions) to occur.  

For a particular metabolic pathway, for example the hormonal pathway, there are three possible 
actions: (1) endocrine, (2) paracrine (3) autocrine as discussed previously. Note that in hormonal 
pathways, the binding of hormonal receptors can be of agonist type (inducing events) or 
antagonist type (blocking the binding of the agonist).  

The caller-callee scheme implemented in software is point-to-point within a program or between 
two programs, just as the hormonal pathway. Existing software schemes have the same 
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capability (local and remote calls) just as hormonal schemes (i.e. autocrine, paracrine and 
endocrine) do. There is no agonist-antagonist type of implementation in software, however.  

In hormonal pathways, the pituitary organ is the master gland of the human body. It secretes 
hormones under the control of the hypothalamus. The anterior pituitary and posterior pituitary 
secrete a collection of hormones that affect virtually all physiological processes. These hormones 
in turn can be inhibited or released by those secreted by the hypothalamus via negative feedback 
control mechanism. The two stage-control mechanism (hypothalamus-pituitary) is rarely found in 
current software program architecture. Current work in artificial neural nets does not consider the 
endocrine idea.    

We claim that the software infrastructure should allow a communication mechanism to be 
“hormone-like”: in addition to the capability of point-to-point, selected broadcast and full broadcast 
a biologically-inspired software should have the agonist/antagonist property as well as hormonal 
dual control.   

PHYSIOLOGICAL ASPECT: WIDE COLLABORATION AND HOMEOSTASIS 

Organisms have the basic biological levels of organizations: cell, tissue, organ and organ system. 
At the lower level, their cells are subject to all the same biological mechanisms (e.g. mitosis, 
meiosis, glycolysis, Krebs cycle, etc.). At the higher level, their bodies are governed by the same 
life processes (e.g. respiration, excretion, reproduction, growth, etc.). All levels of organizations 
obey the same physical and chemical laws.  

At the cellular level, the physical body involves the same types of cells, germ and somatic, and 
the same kinds of organelles in each cell. The resulting cells (in order of billions) by division and 
differentiation bathe in the same types of fluid: interstitial and blood plasma for the exchange of 
oxygen, carbon dioxide, nutrients digested from food, and wastes to be disposed (re. section III). 
At the tissue level, the body has the same four major types of tissues: epithelial, nervous, 
muscular and connective. The tissues make up of many types of organs: brain, heart, lung, liver, 
etc. and ten organ systems.  

The organs and organ systems of the organisms work in collaboration. The respiration system 
gets the oxygen during inhale and attaches the oxygen to the hemoglobin of red blood cells for 
transportation via the pulmonary circulatory system. It also collects carbon dioxide to dispose 
during exhale. The digestive system breaks down the food into the nutrients. The latter are 
absorbed most commonly through the intestinal wall into blood vessels of the systemic circulatory 
system. Working together with the respiratory, digestive and urinary system, the systemic 
circulatory system delivers nutrients and oxygen to every single cell where nutrients are absorbed 
at the interstitial fluid. Carbon dioxide and waste of different kinds, organic and inorganic, are 
collected and then disposed.  

This collaboration between the organ systems is to keep all cells alive and active. In conjunction 
with the dual, layered hormonal control discussed in the previous section, the physiology of the 
organism via wide collaboration is to maintain homeostasis. Homeostasis expresses the internal 
harmony. The controls for homeostasis involve the interoperability of the entire body. Failure of 
control will lead to catastrophic result. It is known that blood concentration of glucose throughout 
the body must be higher than 1mg per ml. If it drops below that threshold, neurons will 
misbehave, organs and organ systems will fail and coma and death will ensue.   

In some fashion, the GUI or presentation layer of the software application is partially similar to the 
sensory system and partially to the respiratory system. Raw or XML data are captured, processed 
and outputted back to the presentation layer. The manipulation of data by the business logic layer 
of the software is like the digestive system. The data are processed by the database logic where 
the database engine acts more or less like the heart. The data are distributed via a network 
communication much as the circulatory system does the blood. The heart pumps the blood 
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carrying nutrients and hemoglobin throughout the body just as the database pumps the data in 
and out via the network communications for processing by the database and other applications.  

Trillions of chemical reactions take place to allow the whole body to continue in homeostasis and 
health. All computing processes are to keep the business, scientific and industrial applications 
and systems connected, alive, well behaved and in adequate communication.   

COGNITIVE ASPECT: NATURE AND NURTURE DEVELOPMENT, AND THE WISDOM OF 
THE BODY  

The cognitive capabilities involve two major processes: autonomic and learned. The first involves 
nature, the second involves nurture. The following provides a little more details on the cognitive 
capability development.  

It is common knowledge that at the end of the first trimester of human pregnancy, even though an 
embryo (now called a fetus) is about three inches long and one ounce heavy, it is anatomically 
almost complete. The major organ, the brain, is being completed [Scheibel, 2004]. The heart 
beats, the blood circulation flows, and the kidneys begin to make urine. During the second 
trimester, the fetus is able to suck the thumb or perform swallowing motions and react to stimuli 
such as pressure, as well as hear the mother’s voice while in the uterus. During the third 
trimester, the fetus becomes active, coordinated suck and swallow reflex develops, their eyes 
responds to changes between dark and light within the womb. Motions are noticeable, and brain 
nerves grow rapidly. Prior to birth, the last organ, i.e. the lungs, is maturing. At birth, newborns 
are considered as anatomically and physiologically complete, which allow the partial development 
of the autonomic cognitive capabilities by nature and nurture. 

From birth, newborns are to be nurtured. They are fast learners. They begin to tune in to basic 
sounds of words and sentence patterns, the building blocks of thought. At the end of one month, 
they can produce some vowel sounds. They can follow objects with their eyes. They form images 
as their versions of reality. They develop a sense of perception. Between two and four months, 
they can roll from back to side, lift their head, stretch the limbs, hold objects indicating the start of 
their autonomous capability. They recognize their names after several months. They understand 
simple requests. They also learn how to crawl after six to eight months, and walk after the first 
year. They have a vocabulary of about 50 words in their first year. Most amazingly, they develop 
simple concepts of “in” vs. “out”, “ugly” vs. “beautiful”, “bad” vs. “good” and show some 
coordination of perception and action as well as of perception and decision. Continuing the 
growth and development by nature and nurture, the newborns’ brain makes more synaptic 
connections, strengthen their cell signaling and increases the number of synapses. Detailed 
description of the preceding discussion can be found in many standard textbooks on psychology, 
developmental psychology and cognitive science [Morris el al. 2002, Craig et al. 2001, Sobel 
2001].  

 We might say that the newborns, at the time of their birth, possess more or less the same 
average potentials of learning and the abilities of skill development. The newborn interacts with 
the environment over time to further grow and develop, and to acquire and use different domain 
knowledge. Gradually the newborn becomes a toddler, a child, a teenager and then an adult 
capable of cognitive activities as well as physical and mental capabilities: walking, running, 
understanding new knowledge, reasoning and acting upon in new situations. The combined 
(physical and cognitive) growth allows the newborn to integrate sensation, perception, action and 
decision, etc. to develop speech, vision, taste, smell, touch, balance, motion, memory, etc. and 
become skillful physically and mentally. 

The fascinating creation of organisms and their growth and development involves both nature and 
nurture, followed by learning from numerous life experiences. Since the discovery of molecular 
biology, these high-level cognitive capabilities (e.g. thinking, thought, memory, etc.) can be 
explained by linking them to their low-level biological basis [Marcus, 2004]. We claim that the 
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software continuum fosters a software development similar to the development by nature to be 
followed by a development by nurture. 

ECOLOGICAL ASPECT: SELF-ORGANIZATION, EMERGENCE, EVOLUTION AND 
COMPLEXITY 

The natural continuum concepts also gives rise to other important systemic properties, e.g. 
emergence and self-organization as observed in natural and biological systems. These concepts 
have been extensively studied by numerous researchers [Flake, 2003] in the context of general 
system theory [von Bertalanffy 1969, Capra 1996], complexity theory [Kauffman 1995, Woffram 
2002], chaos theory [Nicolis et al. 1989, Prigogine 1984, Mandelbrot 1983, Lorenz 1993] at all 
levels of organization. The concepts offer links to Starling’s concept of wisdom of the body 
[Cannon 1938, Nuland 1997, Zajicek 2003].  

The systemic features will be addressed in details in a separate paper. In the next section, we 
attempt to elaborate some design considerations for robustness in e-business software 
automation servicing the Internet. 

V. EXAMPLE MAPPING OF A MAJOR ARCHITECTURE FRAMEWORK TO THE 
BIOLOGICALLY INSPIRED FRAMEWORK 

To apply the software continuum concept to real-life large-scale applications, this section 
attempts to draw an example mapping between a major architecture framework (AF) such as 
Homeland Security/Homeland Defense (HS/HD) AF [Dawson 2003] and the proposed 
biologically-inspired framework. We hope to gain insights into the conceptualization and 
realization of two important features of software automation driving the applications: robustness in 
software intelligence and autonomy and flexibility in strategy-operations integration.  

HS/HD deals with all sorts of threats against our homeland. The threats range from some large 
refugee flow potentially offending the nation security to weapons of mass destruction. A brief 
discussion on the basic understanding of HS/HD is given by Larson and Peters [Larson et al. 
2004].  

To address these threats, HS/HD requires an integrated cross-enterprise architecture and 
infrastructure protection. It requires timely and accurate, shared and easily accessed information 
across all federal, state and local jurisdictions for decision making [GAO Homeland Security, 
2003]. Many vendors have proposed different approaches and a wide range of tools for HS/HD 
enterprise architecture (EA) especially in the area of information sharing.  

The discussion on HS/HD mapping may well be presented [Farah-Stapleton 2004] from the 
ARMY/DARPA FCS (Future Combat Systems) C4ISR context (Command, Control, 
Communications, Computers, Intelligence, Surveillance and Reconnaissance) since the latter 
covers a larger range of operations than HS/HD. Note that the information on both HS/HD and 
FCS/C4ISR presented here is available from plenty of unclassified documents published on the 
Internet. The information is obtainable using various search keywords such as “Homeland 
Security architecture”, “DODAF”, “FCS”, “C4ISR”, “SoSCOE”, “network-centric” or “service-based 
architecture”, to name a few. 

The DoD AF V.1 [DoD, 2003] defines a common approach for all DoD other architectures such as 
C4ISR AF. Although it was born after the C4ISR AF V2 [C4ISR 1997], it was the product of 
lessons learned from the C4ISR AF V.1 and V.2 effort [Wood et al, 2003, GAO 2004]. It became 
not only a reference model for military mission but its prospect was intended to encompass 
potentially most federal and business enterprises. These include TEAF of Treasury Department 
and FEAF for federal enterprises.  
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AN EXAMPLE ARCHITECTURE FRAMEWORK MAPPING 

FCS is a collection of systems for the Army’s future force. The FCS development started in 2002 
will cost 22+ billion dollars over a period of 12 years. It involves a few dozens of 
contractors/suppliers selected among the best of the industry. It is currently at the SDD phase 
(system development and demonstration - Milestone B). Its supporting C4ISR software has an 
estimated 34+ million lines of code. The C4ISR is supposed to address a wide spectrum of 
military operations [2003 Army] ranging from peace keeping, through special operations, to future 
conventional large-scale warfare of the year 2014 and beyond. 

To that end, C4ISR uses and exploits the network-centricity concept for the development and 
deployment of its system of systems (SoS) integrating a family of 18+ manned and unmanned 
air/ground combat systems called platforms. The different platforms include vehicles, sensors and 
munitions. Its design is to ensure that the Army’s Objective Force – an agile, flexible, deployable, 
mobile, lethal, survivable and sustainable future force – and its basic combat unit called Unit of 
Action (UA) are strategically responsive and dominant. The underlying concepts for the UA 
operational requirements are: see first, act first, finish first, and finish decisively. The UA is 
equated to the brigade level of organization.  

The C4ISR architecture framework is also service-based, e.g. most if not all C4ISR activities and 
tasks are based on the “service requester- service provider” scheme over a networked collection 
of capabilities. The central piece of the C4ISR service-based architecture is the SoSCOE 
(System-of-Systems Common Operating Environment). It consists of many service families 
ranging from basic common system-level services to distributed application services. The range 
of services include knowledge services, administrative services, communication services, data 
store services, information services, interoperability services and many other supporting services 
[SoSCOE, 2003].  

From the application perspective, the UA uses the following major service components: planning 
and preparation service (PPS), situation understanding service (SU), battle command mission 
execution service (BCME) and warfighter machine interface (WMI). It is supported by a network 
communication system encompassing some important existing (JTRS – Join Tactical Radio 
System – and Win-T – Warfighter Information Network/Tactical) and future communication 
technologies. Sensor-based SU service can be equated to See first and Understand first, PPS 
service to Understand first and Act first, and BCME service to See first, Understand first, Act first 
and Finish decisively. The application service components rely on the SoSCOE knowledge 
service, among others. The latter is an enterprise-level, complex workflow-like, policy-based, 
inference-driven task integration network (TIN) to handle different roles and scopes of operations. 
SoSCOE is the engine driving all important activities.  

As the central piece of C4ISR, SoSCOE architecture dictates the scope of extensibility of the UA 
to cope with a wide range of warfare. It is currently focused on the conventional large-scale 
warfare. The extensibility to other warfare remains to be explored.  

From the biologically-inspired framework perspective, we consider the FCS C4ISR UA as a 
higher organism and predator. The SoSCOE or an equivalent system is then a combination of 
some major organ systems coordinating the collection of biologically-inspired services satisfying 
the properties described in Section IV. As such, the UA network communications is much similar 
to the circulation and/or endocrine backbones. The PPS and SU services can be partially mapped 
to those provided by the nervous system. The BCME and WMI define the other physiological 
capabilities (autonomy and cognitive maps) guiding the behavior of the entire digital organism.  

Each of the 18 platforms used by the UA can be considered as different organism or 
microorganism. These platform organisms can be considered as belonging to or living outside of 
the UA. Depending on the nature of the platform, each can also be considered as an organ or 
major organ system of the higher organism.  
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In the following, we elaborate the FCS C4ISR considerations for: (1) the making of C4ISR 
software automation to attain the robustness in intelligence and autonomy and (2) the flexibility of 
high-level strategy to low-level operations integration in the C4ISR for its adaptation to different 
warfare in the entire spectrum of operations other than just conventional large-scale warfare. 

THE MAKING OF C4ISR UA: A GENOMIC, ANATOMICALLY-NECESSARY, 
PHYSIOLOGICALLY-SUFFICIENT AND COGNITIVELY-ABLE SOFTWARE  

The following sketches a general process by which the software automation (e.g. Homeland 
Security or C4ISR) can be conceptualized and constructed. The process consists of the following 
major activities: 

1. Anatomically necessary software build: Model and prototype a generic software program 
that is anatomically necessary (rather than anatomically complete) similar to embryonic 
development [Kimball 2003]. The embryo-like development follows four major phases: 
software conceptualization (similar to fertilization), patterning (similar to the separation of 
ectoderm, mesoderm and endoderm from the blastocyst), differentiation (partial development 
of organ-like and organ system-like functionality), and growth (to become anatomically 
necessary). One such attempt is drawn in Nguyen [Nguyen, 2003]. 

2. Physiologically sufficient software build: Develop the “fetus” software in a fashion similar 
to physiological development. This activity is to build features of the software that are 
operational physiologically. The software has a brain-like component based on the 
McCullough and Pitts’s neuron model, Hebb’s cell-assembly and connectionist model with 
appropriate considerations for reverberation effect and feedback mechanisms. It has a 
systemic communication with ideas borrowed from human systemic circulation. It also has 
the information/data manipulation capability with ideas borrowed from the digestive system. It 
has the self-repair mechanism with ideas borrowed from the immune system.     

3. Cognitively able software build: Nurture the “newborn” software in a fashion similar to 
growth and development of a newborn child. This activity is to build intelligence (simply 
defined as the timely collaboration of perception and decision making) and autonomy (the 
timely collaboration of perception and action) and tune its “software brain/mind” in selected 
domain knowledge. The software might use methods and techniques in AI (e.g. neural nets, 
reasoning schemes, smart machines) and those of cognitive science in a fashion similar to 
child learning and development.  

4. Software copied for intended application services: Copy the developed software for 
added domain knowledge to support C4ISR UA, i.e. build once, adapt anywhere. This is 
where the ultimate cost-benefit advantage of the proposed process will be seen. 

The above generally constitutes a software organism that is “anatomically necessary”, 
“physiologically sufficient”, “cognitively able”, and “copiable”.  

At this time of our research, the key notion is partially genomic, i.e. only enough genomic OO 
classes are developed to mimic certain selected human capabilities. Obviously this task is not 
easy and is bound to be expensive and time consuming.  

FLEXIBLE STRATEGY-OPERATION INTEGRATION  

High-level strategy to low-level operations linkage in a business enterprise is a complex reality. 
Most research on this linkage therefore is directed mainly towards the alignment between 
strategy and operations to simplify the issues under consideration. The alignment, as its name 
implies, hinders, however, the exploitation of either high-level abilities or low-level capabilities, 
and the flexibility of changing them.  

It is no different for the HS/HD or C4ISR strategy-operation integration. First, the inertia 
embedded in the organizational hierarchy or pyramid can’t be ignored [Schenk 2000] in these 
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organizations. Second, the current emphasis on SoSCOE service-based architecture for large-
scale conventional warfare makes it difficult to address the strategic-operational development of 
warfare of different types such as peace making, urban operations, guerrilla, counterinsurgency, 
and/or counterterrorism.  

We claim that the software continuum framework offers a direct linkage between the proposed 
biologically-inspired HS/HD or C4ISR and the different types of warfare strategic development. It 
is because the biologically-inspired framework offers, in addition to the robust capabilities, a rich 
collection of self-healing, self-protection processes much as the living organisms do against 
microorganisms and different types of diseases. Guerilla and terrorism warfare can be equated to 
biological attacks by microorganisms. Many known biological schemes can be considered for 
applicability to the software automation if a biologically-inspired approach is adopted. This initial 
idea of the general mapping not only preserves the current properties of SoSCOE service 
concept of the C4ISR such as service independence, common interface, and invocation, but also 
offers higher flexibility to address different types of warfare. The flexibility in strategy-operation 
integration is inherent because the living organism is flexible and robust for a wide range of 
higher functions and behavior. Thus, the newly-mapped, biologically-inspired, resulting UA 
interacts with the other supporting organisms in an ecology of warfare to fight against the future 
enemy forces to gain competitive edge, to become responsive and dominant in the battlefield.  

VI. CONCLUDING REMARKS 

Because biology is complex, so are biologically-inspired systems. The software continuum 
concept mimicking the natural continuum, proposed in this research is therefore complex. The 
work presented in this paper constitutes a general biologically-inspired foundation during the 
general conceptualization phase in the quest for robust, intelligent and autonomous software 
development. Our work is incomplete and still evolving. We still need to sharpen the details in 
many areas. The effort is long-term but potentially viable. The proposed biologically-inspired 
framework will be cost-effective since “we build once, adapt anywhere”. It is similar to the Java 
concept of write once, run anywhere [Curtin, 1998]. It has the potential to include new 
computational technologies if available and applicable, just as humans are able to learn new 
knowledge and develop new skills.  

Previous research tackled many areas of biological levels of organization. The biologically-
inspired mechanisms continue to become candidates for our adaptation. Current OOP packages 
for biology-computer interface work are available for extension, and other packages that are 
gene-comparable can be built. So are existing OO components and frameworks. Some current 
mathematical models are available for use, for example, von Neumann’s cellular automata, 
McCullough and Pitts’ neural model, Hebb’s cell assembly model, and Barabasi’s work on cell 
network [Barabasi 2004]. Some capabilities that emerge from the bottom up may be investigated 
since our framework follows the same biological levels of organization.  

The software continuum concept presented in this paper may be viewed as a demonstration of 
Hewitt’s [2003] comment on continuity in his discussion on Read’s mind and brain  

“For an evolutionary theory to be convincing we must, as I say, be able to 
demonstrate continuity, that is, we need to be able to point to a continuous range 
of function right up from inanimate molecules through levels of increasing 
complexity to the human. So that what exists nascently at a lower level can be 
seen to have fulfilled its potential further up the ladder; in particular, we would like 
to be able to show how mind emerges from matter…”  

In general, the links between the natural continuum and software continuum appear natural. 
Biological systems and man-made systems start from the same point of departure: the elements 
(atoms) described in the periodic table, where hydrogen is the element with the lowest atomic 
number 1 and ununoctium is the currently highest, with atomic number 118. In fact, a biological 
cell, the unit of life, is made of organic compounds (macromolecules) which in turn are made of 
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molecules of various inorganic elements (C, H, N, O and others). A software program, considered 
here as the unit of computer execution, is made of software instructions which are translated into 
machine codes running on computer hardware. The hardware itself is built from materials made 
of elements drawn from the same set of available atoms described in the periodic table.  

When applying the concept of the software continuum to real world problems we notice that it has 
the potential to address infrastructure issues as implied in its levels of organization comparable to 
the levels of organization of nature. This observation opens up areas of investigation in support of 
business ecosystem and Internet ecosystem concepts and their business models as sketched by 
James Moore and Cisco or the ICT European consortium for the DBE project. It also leads us to 
another question, with some philosophical implication: whether the man-made OOP “platforms” 
(C++ or Java) have been unconsciously patterned after biological systems due to the link 
between them: the human mind. 
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